Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(9): e2310082121, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38377205

RESUMEN

Embryonic development is often considered shielded from the effects of natural selection, being selected primarily for reliable development. However, embryos sometimes represent virulent parasites, triggering a coevolutionary "arms race" with their host. We have examined embryonic adaptations to a parasitic lifestyle in the bitterling fish. Bitterlings are brood parasites that lay their eggs in the gill chamber of host mussels. Bitterling eggs and embryos have adaptations to resist being flushed out by the mussel. These include a pair of projections from the yolk sac that act as an anchor. Furthermore, bitterling eggs all adopt a head-down position in the mussel gills which further increases their chances of survival. To examine these adaptations in detail, we have studied development in the rosy bitterling (Rhodeus ocellatus) using molecular markers, X-ray tomography, and time-lapse imaging. We describe a suite of developmental adaptations to brood parasitism in this species. We show that the mechanism underlying these adaptions is a modified pattern of blastokinesis-a process unique, among fish, to bitterlings. Tissue movements during blastokinesis cause the embryo to do an extraordinary "front-flip" on the yolk. We suggest that this movement determines the spatial orientation of the other developmental adaptations to parasitism, ensuring that they are optimally positioned to help resist the ejection of the embryo from the mussel. Our study supports the notion that natural selection can drive the evolution of a suite of adaptations, both embryonic and extra-embryonic, via modifications in early development.


Asunto(s)
Cyprinidae , Parásitos , Animales , Interacciones Huésped-Parásitos
2.
Sci Rep ; 14(1): 2471, 2024 01 30.
Artículo en Inglés | MEDLINE | ID: mdl-38291228

RESUMEN

Sex chromosome replacement is frequent in many vertebrate clades, including fish, frogs, and lizards. In order to understand the mechanisms responsible for sex chromosome turnover and the early stages of sex chromosome divergence, it is necessary to study lineages with recently evolved sex chromosomes. Here we examine sex chromosome evolution in a group of African cichlid fishes (tribe Tropheini) which began to diverge from one another less than 4 MYA. We have evidence for a previously unknown sex chromosome system, and preliminary indications of several additional systems not previously reported in this group. We find a high frequency of sex chromosome turnover and estimate a minimum of 14 turnovers in this tribe. We date the origin of the most common sex determining system in this tribe (XY-LG5/19) near the base of one of two major sub-clades of this tribe, about 3.4 MY ago. Finally, we observe variation in the size of one sex-determining region that suggests independent evolution of evolutionary strata in species with a shared sex-determination system. Our results illuminate the rapid rate of sex chromosome turnover in the tribe Tropheini and set the stage for further studies of the dynamics of sex chromosome evolution in this group.


Asunto(s)
Cíclidos , Animales , Cíclidos/genética , Lagos , Tanzanía , Filogenia , ADN Mitocondrial/genética , Cromosomas Sexuales/genética , Evolución Molecular
3.
Chromosome Res ; 31(4): 33, 2023 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-37985497

RESUMEN

Satellite DNA (satDNA) is a rapidly evolving class of tandem repeats, with some monomers being involved in centromere organization and function. To identify repeats associated with (peri)centromeric regions, we investigated satDNA across Southern and Coastal clades of African annual killifishes of the genus Nothobranchius. Molecular cytogenetic and bioinformatic analyses revealed that two previously identified satellites, designated here as NkadSat01-77 and NfurSat01-348, are associated with (peri)centromeres only in one lineage of the Southern clade. NfurSat01-348 was, however, additionally detected outside centromeres in three members of the Coastal clade. We also identified a novel satDNA, NrubSat01-48, associated with (peri)centromeres in N. foerschi, N. guentheri, and N. rubripinnis. Our findings revealed fast turnover of satDNA associated with (peri)centromeres and different trends in their evolution in two clades of the genus Nothobranchius.


Asunto(s)
Fundulidae , Peces Killi , Animales , ADN Satélite , Peces Killi/genética , Fundulidae/genética , Centrómero/genética , Evolución Molecular
4.
Mol Ecol ; 32(22): 6070-6082, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37861460

RESUMEN

Host-parasite dynamics involve coevolutionary arms races, which may lead to host specialization and ensuing diversification. Our general understanding of the evolution of host specialization in brood parasites is compromised by a restricted focus on bird and insect lineages. The cuckoo catfish (Synodontis multipunctatus) is an obligate parasite of parental care of mouthbrooding cichlids in Lake Tanganyika. Given the ecological and taxonomic diversity of mouthbrooding cichlids in the lake, we hypothesized the existence of sympatric host-specific lineages in the cuckoo catfish. In a sample of 779 broods from 20 cichlid species, we found four species parasitized by cuckoo catfish (with prevalence of parasitism of 2%-18%). All parasitized cichlids were from the tribe Tropheini, maternal mouthbrooders that spawn over a substrate (rather than in open water). Phylogenetic analysis based on genomic (ddRAD sequencing) and mitochondrial (Dloop) data from cuckoo catfish embryos showed an absence of host-specific lineages. This was corroborated by analyses of genetic structure and co-ancestry matrix. Within host species, parasitism was not associated with any individual characteristic we recorded (parent size, water depth), but was costly as parasitized parents carried smaller clutches of their own offspring. We conclude that the cuckoo catfish is an intermediate generalist and discuss costs, benefits and constraints of host specialization in this species and brood parasites in general.


Asunto(s)
Bagres , Cíclidos , Parásitos , Animales , Bagres/genética , Cíclidos/genética , Interacciones Huésped-Parásitos/genética , Comportamiento de Nidificación , Filogenia , Agua
5.
J Fish Biol ; 103(6): 1501-1514, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37661806

RESUMEN

Using African annual killifishes of the genus Nothobranchius from temporary savannah pools with rapid karyotype and sex chromosome evolution, we analysed the chromosomal distribution of telomeric (TTAGGG)n repeat and Nfu-SatC satellite DNA (satDNA; isolated from Nothobranchius furzeri) in 15 species across the Nothobranchius killifish phylogeny, and with Fundulosoma thierryi as an out-group. Our fluorescence in situ hybridization experiments revealed that all analysed taxa share the presence of Nfu-SatC repeat but with diverse organization and distribution on chromosomes. Nfu-SatC landscape was similar in conspecific populations of Nothobranchius guentheri and Nothobranchius melanospilus but slightly-to-moderately differed between populations of Nothobranchius pienaari, and between closely related Nothobranchius kuhntae and Nothobranchius orthonotus. Inter-individual variability in Nfu-SatC patterns was found in N. orthonotus and Nothobranchius krysanovi. We revealed mostly no sex-linked patterns of studied repetitive DNA distribution. Only in Nothobranchius brieni, possessing multiple sex chromosomes, Nfu-SatC repeat occupied a substantial portion of the neo-Y chromosome, similarly as formerly found in the XY sex chromosome system of turquoise killifish N. furzeri and its sister species Nothobranchius kadleci-representatives not closely related to N. brieni. All studied species further shared patterns of expected telomeric repeats at the ends of all chromosomes and no additional interstitial telomeric sites. In summary, we revealed (i) the presence of conserved satDNA class in Nothobranchius clades (a rare pattern among ray-finned fishes); (ii) independent trajectories of Nothobranchius sex chromosome differentiation, with recurrent and convergent accumulation of Nfu-SatC on the Y chromosome in some species; and (iii) genus-wide shared tendency to loss of telomeric repeats during interchromosomal rearrangements. Collectively, our findings advance our understanding of genome structure, mechanisms of karyotype reshuffling, and sex chromosome differentiation in Nothobranchius killifishes from the genus-wide perspective.


Asunto(s)
Ciprinodontiformes , ADN Satélite , Animales , ADN Satélite/genética , Hibridación Fluorescente in Situ , Cariotipo , Fundulus heteroclitus
6.
Behav Ecol ; 34(4): 521-527, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37434635

RESUMEN

Brood parasites have demanding needs of host resources. Brood parasitic offspring are highly competitive and frequently cause the failure of host broods and the survival of a single parasitic offspring. Accordingly, virulent brood parasites lay a single egg in the same host nest to avoid sibling competition. In the cuckoo catfish (Synodontis multipunctatus), which parasitize mouthbrooding cichlid fishes in Lake Tanganyika, the modes of host and parasite oviposition lead to frequent cases of multiple parasitism. We experimentally tested the prediction that multiple parasitism leads to frequent cannibalism among offspring. Cuckoo catfish embryos prey upon host offspring to obtain nourishment during their 3-week development in the host buccal cavity and may also consume conspecific embryos. The potential benefits of cannibalism in the system are, therefore, twofold; to decrease competition for limited resources (i.e., host brood with rich yolk sacs) and to directly obtain nourishment by consuming rivals. We found that cannibalism indeed provided measurable benefits in terms of increased growth of the cannibals, but cannibalism was rare and typically occurred once all host offspring had been consumed. This implies that cannibalism among cuckoo catfish embryos emerges to mitigate starvation rather than eliminate competition.

7.
Aquat Toxicol ; 259: 106517, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37087860

RESUMEN

There is a growing need of alternative experimental models that avoid or minimize the use of animals due to ethical, economical, and scientific reasons. Surprisingly, the stable embryonic cell lines representing Nothobranchius spp., emerging vertebrate models in aging research, regenerative medicine, ecotoxicology, or genomics, have been not derived so far. This paper reports establishment and deep characterization of ten continuous cell lines from annual killifish embryos of N. furzeri and N. kadleci. The established cell lines exhibited mostly fibroblast- and epithelial-like morphology and steady growth rates with cell doubling time ranging from 27 to 40 h. All cell lines retained very similar characteristics even after continuous subcultivation (more than 100 passages) and extended storage in liquid nitrogen (∼3 years). The cytogenetic analysis of the cell lines revealed a diploid chromosome number mostly equal to 38 elements (i.e., the native chromosome count for both killifish species), with minor but diverse line/passage-specific karyotype changes compared to the patterns observed in non-cultured N. furzeri and N. kadleci somatic cells. Based on transcriptional analysis of marker genes, the cell lines displayed features of an undifferentiated state without signs of senescence even in advanced passages. We confirmed that the cell lines are transfectable and can form viable 3-D spheroids. The applicability of the cell lines for (eco)toxicological surveys was confirmed by assessing the effect of cytotoxic and growth inhibitory agents. Properties of established Nothobranchius embryonic cell lines open new possibilities for the application of this model in various fields of life sciences including molecular mechanisms of aging, karyotype (in)stability or differences in lifespan.


Asunto(s)
Ciprinodontiformes , Fundulidae , Contaminantes Químicos del Agua , Animales , Fundulidae/genética , Contaminantes Químicos del Agua/toxicidad , Ciprinodontiformes/genética , Envejecimiento , Línea Celular
8.
Biol Open ; 12(4)2023 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-36919760

RESUMEN

Impaired wound healing is associated with aging and has significant effects on human health on an individual level, but also on the whole health-care sector. Deficient angiogenesis appears to be involved in the process, but the underlying biology is still poorly understood. This is at least partially being explained by complexity and costs in using mammalian aging models. To understand aging-related vascular biology of impaired wound healing, we used zebrafish and turquoise killifish fin regeneration models. The regeneration of caudal fin after resection was significantly reduced in old individuals in both species. Age-related changes in angiogenesis, vascular density and expression levels of angiogenesis biomarker VEGF-A were observed. Furthermore, the anti-angiogenic drug vascular endothelial growth factor receptor blocking inhibitor SU5416 reduced regeneration, indicating a key role for angiogenesis in the regeneration of aging caudal fin despite aging-related changes in vasculature. Taken together, our data indicate that these fish fin regeneration models are suitable for studying aging-related decline in wound healing and associated alterations in aging vasculature.


Asunto(s)
Fundulidae , Pez Cebra , Animales , Humanos , Anciano , Pez Cebra/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas de Pez Cebra , Cicatrización de Heridas , Mamíferos/metabolismo
9.
Mol Biol Evol ; 39(11)2022 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-36318827

RESUMEN

A vast body of studies is available that describe age-dependent gene expression in relation to aging in a number of different model species. These data were obtained from animals kept in conditions with reduced environmental challenges, abundant food, and deprivation of natural sensory stimulation. Here, we compared wild- and captive aging in the short-lived turquoise killifish (Nothobranchius furzeri). These fish inhabit temporary ponds in the African savannah. When the ponds are flooded, eggs hatch synchronously, enabling a precise timing of their individual and population age. We collected the brains of wild fish of different ages and quantified the global age-dependent regulation of transcripts using RNAseq. A major difference between captive and wild populations is that wild populations had unlimited access to food and hence grew to larger sizes and reached asymptotic size more rapidly, enabling the analysis of age-dependent gene expression without the confounding effect of adult brain growth. We found that the majority of differentially expressed genes show the same direction of regulation in wild and captive populations. However, a number of genes were regulated in opposite direction. Genes downregulated in the wild and upregulated in captivity were enriched for terms related to neuronal communication. Genes upregulated in the wild and downregulated in captive conditions were enriched in terms related to DNA replication. Finally, the rate of age-dependent gene regulation was higher in wild animals, suggesting a phenomenon of accelerated aging.


Asunto(s)
Ciprinodontiformes , Fundulidae , Animales , Fundulidae/genética , Envejecimiento/genética , Ciprinodontiformes/genética , Animales Salvajes/genética , Encéfalo
10.
Chromosome Res ; 30(4): 309-333, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36208359

RESUMEN

Homomorphic sex chromosomes and their turnover are common in teleosts. We investigated the evolution of nascent sex chromosomes in several populations of two sister species of African annual killifishes, Nothobranchius furzeri and N. kadleci, focusing on their under-studied repetitive landscape. We combined bioinformatic analyses of the repeatome with molecular cytogenetic techniques, including comparative genomic hybridization, fluorescence in situ hybridization with satellite sequences, ribosomal RNA genes (rDNA) and bacterial artificial chromosomes (BACs), and immunostaining of SYCP3 and MLH1 proteins to mark lateral elements of synaptonemal complexes and recombination sites, respectively. Both species share the same heteromorphic XY sex chromosome system, which thus evolved prior to their divergence. This was corroborated by sequence analysis of a putative master sex determining (MSD) gene gdf6Y in both species. Based on their divergence, differentiation of the XY sex chromosome pair started approximately 2 million years ago. In all populations, the gdf6Y gene mapped within a region rich in satellite DNA on the Y chromosome long arms. Despite their heteromorphism, X and Y chromosomes mostly pair regularly in meiosis, implying synaptic adjustment. In N. kadleci, Y-linked paracentric inversions like those previously reported in N. furzeri were detected. An inversion involving the MSD gene may suppress occasional recombination in the region, which we otherwise evidenced in the N. furzeri population MZCS-121 of the Limpopo clade lacking this inversion. Y chromosome centromeric repeats were reduced compared with the X chromosome and autosomes, which points to a role of relaxed meiotic drive in shaping the Y chromosome repeat landscape. We speculate that the recombination rate between sex chromosomes was reduced due to heterochiasmy. The observed differences between the repeat accumulations on the X and Y chromosomes probably result from high repeat turnover and may not relate closely to the divergence inferred from earlier SNP analyses.


Asunto(s)
Fundulidae , Peces Killi , Animales , Humanos , Peces Killi/genética , Fundulidae/genética , Hibridación Fluorescente in Situ , Hibridación Genómica Comparativa , Cromosomas Sexuales/genética , Cromosoma Y/genética , Pueblo Africano , Evolución Molecular
11.
Cold Spring Harb Protoc ; 2022(11): Pdb.prot107739, 2022 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-35960623

RESUMEN

Paraffin histology is one of the most important and commonly used laboratory techniques enabling the study of the microscopic structure of animal and plant tissues. This technique uses paraffin wax, which in liquid form impregnates fixed and dehydrated tissues and allows the preparation of thin sections when solidified in blocks. This protocol on good practices in paraffin histology of Nothobranchius furzeri (Nothobranchiidae) summarizes the authors' current experience in terms of technique, evaluation, and interpretation of sectioned tissues. The steps that precede paraffin block preparation are also presented as they play a key role in maximizing the quality of examined sections. The paraffin technique as described only requires basic laboratory conditions to produce good-quality results. The description of staining methods is limited to Mayer's hematoxylin and eosin (H&E), the routinely used histological dye staining cell nuclei in blue-black (hematein) and cell cytoplasm and connective tissue fibers in shades of pink-red (eosin). Killifish specialists are encouraged to engage in the study of histology and histopathology, taking advantage of interdisciplinary cooperation.


Asunto(s)
Fundulidae , Animales , Eosina Amarillenta-(YS) , Parafina , Coloración y Etiquetado , Microtomía
13.
Ecol Evol ; 12(6): e8990, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35784061

RESUMEN

Temporary pools are seasonal wetland habitats with specifically adapted biota, including annual Nothobranchius killifishes that survive habitat desiccation as diapausing eggs encased in dry sediment. To understand the patterns in the structure of Nothobranchius assemblages and their potential in wetland conservation, we compared biodiversity components (alpha, beta, and gamma) between regions and estimated the role and sources of nestedness and turnover on their diversity. We sampled Nothobranchius assemblages from 127 pools across seven local regions in lowland Eastern Tanzania over 2 years, using dip net and seine nets. We estimated species composition and richness for each pool, and beta and gamma diversity for each region. We decomposed beta diversity into nestedness and turnover components. We tested nestedness in three main regions (Ruvu, Rufiji, and Mbezi) using the number of decreasing fills metric and compared the roles of pool area, isolation, and altitude on nestedness. A total of 15 species formed assemblages containing 1-6 species. Most Nothobranchius species were endemic to one or two adjacent regions. Regional diversity was highest in the Ruvu, Rufiji, and Mbezi regions. Nestedness was significant in Ruvu and Rufiji, with shared core (N. melanospilus, N. eggersi, and N. janpapi) and common (N. ocellatus and N. annectens) species, and distinctive rare species. Nestedness apparently resulted from selective colonization rather than selective extinction, and local species richness was negatively associated with altitude. The Nothobranchius assemblages in the Mbezi region were not nested, and had many endemic species and the highest beta diversity driven by species turnover. Overall, we found unexpected local variation in the sources of beta diversity (nestedness and turnover) within the study area. The Mbezi region contained the highest diversity and many endemic species, apparently due to repeated colonizations of the region rather than local diversification. We suggest that annual killifish can serve as a flagship taxon for small wetland conservation.

14.
Sci Rep ; 12(1): 9230, 2022 06 02.
Artículo en Inglés | MEDLINE | ID: mdl-35654924

RESUMEN

Sex change (sequential hermaphroditism) has evolved repeatedly in teleost fishes when demographic conditions mediate fundamentally different sex-specific returns for individuals of particular age and size. We investigated the conditions for potential sex change in an annual killifish (Millerichthys robustus) from temporary pools in Mexico. In natural populations, we detected adults with intersex colouration and gonads. Therefore, we experimentally tested whether this apparent sex change can be generated by manipulation of ecological and social conditions, rather than being caused by environmental disturbance. We demonstrated functional protogynous (female-to-male) sex change in 60% replicates, when groups of five females interacted and had a visual and olfactory cue of a male. Only one female changed sex in any given replicate. The sex change never occurred in isolated females. Protandrous (male-to-female) hermaphroditism was not recorded. We characterized gradual changes in behaviour, colouration and gonad structure during the sex change process. The first behavioural signs of sex change were observed after 23 days. Secondary males spawned successfully after 75 days. We discuss the adaptive potential of sex change in short-lived annual fishes through the seasonal decline of males, and during colonization of new habitats. This is the first observation of functional hermaphroditism in an annual killifish.


Asunto(s)
Ciprinodontiformes , Trastornos del Desarrollo Sexual , Fundulidae , Animales , Femenino , Masculino , América del Norte , Procesos de Determinación del Sexo
15.
Nat Commun ; 13(1): 1723, 2022 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-35361775

RESUMEN

Brood parasites are involved in coevolutionary arms races with their hosts, whereby adaptations of one partner elicit the rapid evolution of counter-adaptations in the other partner. Hosts can also mitigate fitness costs of brood parasitism by learning from individual or social experience. In brood parasites, however, the role of learning can be obscured by their stealthy behaviour. Cuckoo catfish (Synodontis multipunctatus) parasitise clutches of mouthbrooding cichlids in Lake Tanganyika and are the only non-avian obligate brood parasites among vertebrates. We experimentally demonstrate that cuckoo catfish greatly enhance their efficiency in parasitising their hosts as they learn to overcome host defences. With increasing experience, cuckoo catfish increased their parasitism success by greater efficiency through improved timing and coordination of intrusions of host spawnings. Hence, within the coevolutionary arms races, brood parasites learn to overcome host defences during their lifetime.


Asunto(s)
Bagres , Cíclidos , Adaptación Fisiológica , Animales , Aves , Simbiosis
16.
J Fish Biol ; 100(4): 894-908, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35195903

RESUMEN

The absence of a controlled diet is unfortunate in a promising model organism for ageing, the turquoise killifish (Nothobranchius furzeri Jubb, 1971). Currently captive N. furzeri are fed bloodworms but it is not known whether this is an optimal diet. Replacing bloodworms with a practical dry feed would reduce diet variability. In the present study, we estimated the nutritional value of the diet ingested by wild fish and determined the fish-body amino acid profile as a proxy for their nutritional requirements. We compared the performance of fish fed four commercial feeds containing 46%-64% protein to that achieved with bloodworms and that of wild fish. Wild fish target a high-protein (60%) diet and this is supported by their superior performance on high-protein diets in captivity. In contrast, feeds for omnivores led to slower growth, lower fecundity and unnatural liver size. In comparison to wild fish, a bloodworm diet led to lower body condition, overfeeding and male liver enlargement. Out of the four dry feeds tested, the fish fed Aller matched wild fish in body condition and liver size, and was comparable to bloodworms in terms of growth and fecundity. A starter feed for carnivorous species appears to be a practical replacement for bloodworms for N. furzeri. The use of dry feeds improved performance in comparison to bloodworms and thus may contribute to reducing response variability and improving research reproducibility in N. furzeri research.


Asunto(s)
Ciprinodontiformes , Fundulidae , Envejecimiento , Animales , Carnivoría , Ciprinodontiformes/fisiología , Fundulidae/fisiología , Masculino , Reproducibilidad de los Resultados
17.
Immunogenetics ; 74(5): 497-505, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35015128

RESUMEN

Polymorphism of the major histocompatibility complex (MHC), DAB1 gene was characterized for the first time in the European bitterling (Rhodeus amarus), a freshwater fish employed in studies of host-parasite coevolution and mate choice, taking advantage of newly designed primers coupled with high-throughput amplicon sequencing. Across 221 genotyped individuals, we detected 1-4 variants per fish, with 28% individuals possessing 3-4 variants. We identified 36 DAB1 variants, and they showed high sequence diversity mostly located within predicted antigen-binding sites, and both global and codon-specific excess of non-synonymous mutations. Despite deep divergence between two major allelic lineages, functional diversity was surprisingly low (3 supertypes). Overall, these findings suggest the role of positive and balancing selection in promotion and long-time maintenance of DAB1 polymorphism. Further investigations will clarify the role of pathogen-mediated selection to drive the evolution of DAB1 variation.


Asunto(s)
Cyprinidae , Variaciones en el Número de Copia de ADN , Alelos , Animales , Cyprinidae/genética , Cyprinidae/parasitología , Evolución Molecular , Genes MHC Clase II , Variación Genética , Complejo Mayor de Histocompatibilidad , Filogenia , Selección Genética
18.
Mol Ecol ; 31(23): 5979-5992, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34826177

RESUMEN

Telomeres and telomerase prevent the continuous erosion of chromosome-ends caused by lifelong cell division. Shortened telomeres are associated with age-related pathologies. While short telomere length is positively correlated with increased lethality at the individual level, in comparisons across species short telomeres are associated with long (and not short) lifespans. Here, we tested this contradiction between individual and evolutionary patterns in telomere length using African annual killifish. We analysed lifespan and telomere length in a set of captive strains derived from well-defined wild populations of Nothobranchius furzeri and its sister species, N. kadleci, from sites along a strong gradient of aridity which ultimately determines maximum natural lifespan. Overall, males were shorter-lived than females, and also had shorter telomeres. Male lifespan (measured in controlled laboratory conditions) was positively associated with the amount of annual rainfall in the site of strain origin. However, fish from wetter climates had shorter telomeres. In addition, individual fish which grew largest over the juvenile period possessed shorter telomeres at the onset of adulthood. This demonstrates that individual condition and environmentally-driven selection indeed modulate the relationship between telomere length and lifespan in opposite directions, validating the existence of inverse trends within a single taxon. Intraindividual heterogeneity of telomere length (capable to detect very short telomeres) was not associated with mean telomere length, suggesting that the shortest telomeres are controlled by regulatory pathways other than those that determine mean telomere length. The substantial variation in telomere length between strains from different environments identifies killifish as a powerful system in understanding the adaptive value of telomere length.


Asunto(s)
Ciprinodontiformes , Fundulidae , Animales , Femenino , Masculino , Longevidad/genética , Fundulidae/genética , Acortamiento del Telómero/genética , Ciprinodontiformes/genética , Telómero/genética
19.
J Anim Ecol ; 91(3): 540-550, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34954818

RESUMEN

Intersexual differences in life span (age at death) and aging (increase in mortality risk associated with functional deterioration) are widespread among animals, from nematodes to humans. Males often live shorter than females, but there is substantial unexplained variation among species and populations. Despite extensive research, it is poorly understood how life span differences between the sexes are modulated by an interplay among genetic, environmental and social factors. The goal of our study was to test how sex differences in life span and ageing are modulated by social and environmental factors, and by intrinsic differences between males and females. To disentangle the complex basis of sex differences in life span and aging, we combined comparative data from sex ratios in 367 natural populations of four species of African annual killifish with experimental results on sex differences in life span and aging from eight laboratory populations tested in treatments that varied social and environmental conditions. In the wild, females consistently outlived males. In captivity, sex-specific mortality depended on social conditions. In social-housed experimental groups, male-biased mortality persisted in two aggressive species, but ceased in two placid species. When social and physical contacts were prevented by housing all fish individually, male-biased mortality ceased in all four species. This outcome held across benign and challenging environmental conditions. Fitting demographic survival models revealed that increased baseline mortality was primarily responsible for a shorter male life span in social-housing conditions. The timing and rate of aging were not different between the sexes. No marker of functional aging we recorded in our study (lipofuscin accumulation, proliferative changes in kidney and liver) differed between males and females, despite their previously confirmed association with functional aging in Nothobranchius killifish. We show that sex differences in life span and aging in killifish are driven by a combination of social and environmental conditions, rather than differential functional aging. They are primarily linked to sexual selection but precipitated through multiple processes (predation, social interference). This demonstrates how sex-specific mortality varies among species even within an ecologically and evolutionary discrete lineage and explains how external factors mediate this difference.


Asunto(s)
Ciprinodontiformes , Caracteres Sexuales , Envejecimiento , Animales , Ciprinodontiformes/genética , Femenino , Longevidad , Masculino , Razón de Masculinidad
20.
J Fish Biol ; 99(4): 1476-1484, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34287870

RESUMEN

Annual fish species have evolved complex adaptations to survive in temporary wetlands. The main adaptation of these fish is the ability to produce embryos that survive dry periods. Embryo development of this fish can show variation at multiple levels influenced by many environmental factors, such as photoperiod and temperature. Predator cues are another factor that can influence the embryonic stage. One way in which annual fish could adapt to predators is by using risk-spreading strategies (through bet-hedging). Nonetheless, this strategy depends on the coevolutionary history between predators and preys and on the degree of environmental unpredictability, resulting in different responses across different species. This study investigated the influence of predator cues on the embryonic development and hatching of two Austrolebias species that inhabit ponds that present differences in hydroperiod and the risk of predator presence. The results confirmed a differentiated response between the two annual fish species tested, corroborating the modulation of hatching against the risk of predation by native predatory fish. The authors further showed that development times varied between the two annual fish species, regardless of the presence of predators. They highlight that the variation in embryonic development is strongly affected by different levels of hydroperiod unpredictability faced by the two species. To unravel finer-scale local adaptations in the annual fish embryo development, future studies should focus on a region with greater spatial gradient.


Asunto(s)
Ciprinodontiformes , Fundulidae , Adaptación Fisiológica , Animales , Señales (Psicología) , Conducta Predatoria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...